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Abstract

A new and efficient method for the determination of synthetic phenolic antioxidants (SPAs) has been developed by using micellar

electrokinetic capillary chromatography (MECC) with electrochemical detection. Under the optimum conditions, all analytes were

successfully separated within 13 min at the separation voltage of 18 kV in a 20 mmol/L borate running buffer (pH 7.4) containing

25 mmol/L sodium dodecyl sulfate. The excellent linearity was obtained in the concentration range from 5.0 · 10�4 to

2.0 · 10�6 mol/L and the detection limits (S/N = 3) of propyl gallate (PG), tert-butylhydroquinone (TBHQ), butylated hydroxyani-

sole (BHA), and butylated hydroxytoluene (BHT) range from 2.9 · 10�7 to 2.7 · 10�6 mol/L. This method has been proved to be

effective and successfully applied for the determination of SPA in food products, providing a promising and convenient entry to

monitor the superscale use of phenolic antioxidants.

� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The synthetic phenolic antioxidants propyl gallate
(PG), tert-butylhydroquinone (TBHQ), butylated

hydroxyanisole (BHA), and butylated hydroxytoluene

(BHT) are frequently used to prevent food, pharmaceu-

tical, and other commercial products from oxidative

rancidity (IARC, 1986). Various studies have shown

that they could enter human body through the intake

of foods, pharmaceutical, etc. Therefore, the use of these

additives is subject to regulations which defines the per-
mitted compounds and their concentration limits. In

European, the antioxidants mentioned above are strictly
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regulated to use in foodstuffs, BHA is permitted in bou-

illons, gravies, dehydrated meat and dehydrated soups

individually or combined with PG up to a maximum
limit of 200 mg/kg, expressed on the fat content of the

product and BHT is not permitted in these foods but

it may be used in fats and oils. In the United States,

TBHQ is permitted and can be used alone or in combi-

nation with BHA and/or BHT up to 200 mg/kg of fat

(Burdock, 1997). TBHQ is also permitted in Australia,

Brazil, New Zealand and Philippines (Karovičová &

Šimko, 2000b). Recently, people have also found that
excess use of these artificial antioxidants may cause a

loss of nourishment and even produce toxic substances

to harm people�s health (Chung, 1999; Safer & Al-

Nughamish, 1999; Tryphonas, Lacroix, Lok, Jee, &

Clayson, 1999). However, due to the variety of possible

sample matrixes, complexity, the low concentration
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levels and mutual interference of the similar chemical

properties, the analysis of antioxidants is limited (Karo-

vičová & Šimko, 2000a, 2000b). So far, the methods for

the quantitative analysis of these antioxidant mixtures

have been developed included GC (AOAC, 1984), ki-

netic methodology (Aguilar-Caballons, Gómez-Hens,
& Pérez-Bendito, 1997; Aguilar-Caballons, Gómez-

Hens, & Pérez-Bendito, 2000), flow-injection (Garca &

Ortiz, 1998; Yanez-Sadeno, Pingarron, & Polo-Diez,

1991), HPLC (Karovičová & Šimko, 2000a, 2000b;

McCabe & Acworth, 1998; Rustan, Damiano, & Les-

gards, 1993), and voltammetry (Ni, Wang, & Kokot,

2000; Ruiz, Calvo, & Pingarrón, 1994). Most of them

suffer from interference problems, long analysis time,
and low resolution. Therefore, there are still genuine

needs to establish an effective and convenient method

for analytical monitoring of degenerative products, the

use of prohibited antioxidants and the excess use of per-

mitted antioxidants.

Capillary electrophoresis has been the focus of much

current analytical separation techniques due to its celer-

ity, efficiency, reproducibility, ultra-small sample vol-
ume and ease of clearing up the contaminants.

Combined with electrochemical detection, capillary elec-

trophoresis will be more useful for its additional high

sensitivity and good selectivity. To the best of our

knowledge, the method for the determination of pheno-

lic antioxidants by using micellar electrokinetic capillary

chromatography with electrochemical (MECC-ED) has

not been reported yet. In this work, we reported a sensi-
tive and reliable method for the simultaneous determi-

nation of PG, TBHQ, BHA, and BHT in food

products by MECC-ED. The molecular structures of

above ingredients are shown in Fig. 1.
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Fig. 1. Molecular structures of PG, TBHQ, BHA, and BHT.
2. Experimental

2.1. Reagent and solutions

BHA, BHT, PG and TBHQ were purchased from

Sigma (St. Louis, MO, USA) and were all used as re-
ceived. All chemicals were of analytical grade.

Stock solutions of all analytes (1.0 · 10�2 mol/L

each) were prepared in anhydrous ethanol (A.R. grade),

and were diluted to the desired concentration with the

running buffer (20 mmol/L H3BO3–Na2B4O7 buffer

and sodium dodecyl sulphate (SDS) ranging from 5 to

30 mmol/L with pH value 7.4). Before use, all solutions

were filtered through 0.22 lm nylon filters.

2.2. Apparatus

ACE-ED systemhas been described previously (Chen,

Ye, &Cheng, 2000). A±30 kVhigh-voltage power supply

(Shanghai Institute of Nuclear Research, China) pro-

vided a separation voltage between the ends of the capil-

lary. The inlet end of the capillary was held at a positive
potential and the outlet end of capillary was maintained

at ground. The separations were proceeded in a 75 cm

length of 25 lm i.d. and 360 lm o.d. fused-silica capillary

(Polymicro Technologies, Phoenix, AZ, USA). Samples

were all injected electrokinetically, applying 18 kV for 6 s.

A three-electrode electrochemical cell consisting of a

laboratory-made 300 lm diameter carbon disc working

electrode, a platinum auxiliary electrode and a saturated
calomel electrode (SCE) as the reference electrode, was

used in combination with a BAS LC-4C amperometric

detector (Bioanalytical Systems Inc., West Lafayette,

IN, USA). The carbon disc electrode was made of a

piece of 300 lm diameter graphite rod from polishing

technique as descried in a previous report (Gao, Chu,

& Ye, 2002). Before use, the surface of the carbon-disk

electrode was successively polished with emery paper
and alumina power, sonicated in doubly distilled water,

and finally was positioned carefully opposite the outlet

of the capillary with the aid of a micromanipulator

(CORRECT, Tokyo, Japan) and arranged in a wall-jet

configuration (Zhang, Cao, & Ye, 2001). The electro-

pherograms were recorded using a chart record (Shang-

hai Dahua Instrumental Factory, China). A YS 38-1000

220V alternate constant-voltage power supply (Shang-
hai Instrumental Transformer Factory, Shanghai,

China) was employed to suppress the voltage fluctuation

of the power line. The whole system was assembled in a

air-conditioned room at 25 �C in order to minimize the

effects of external noise sources.

2.3. Sample preparation

Accurate amount of samples (about 1.5 g of vegetable

oil, 1 g of mushroom cream or fish soup) was extracted
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with 2 mL anhydrous ethanol for 30 min in an ultra-

sonic bath. The extract was then diluted with running

buffer by a factor of 2, after filtered through 0.22 lm ny-

lon filters, the filtrate was injected directly to the CE-ED

system for analysis. Before use, all solutions were stored

in a 4 �C refrigerator.
3. Results and discussion

3.1. Effect of the applied potential to the working

electrode

In amperometric detection, the potential applied to
the working electrode directly affects the sensitivity,

detection limit and stability of this detection method.

Therefore, hydrodynamic voltammertry experiment

was conducted to obtain optimum detection. As

shown in Fig. 2, the peak current of TBHQ does

not have obvious changes, while, the peak current of

other three analytes increases rapidly when the applied

potential exceed +50 mV for PG, +200 mV for BHA,
and +300 mV for BHT, respectively. However, when

applied potential is greater than +950 mV (vs. SCE),

although the peak current of the analytes still have

certain increase, both the baseline noise and the back-

ground current increase substantially, which is a big

disadvantage for sensitive and stable detection. There-

fore, the potential applied to the working electrode is

maintained at +950 mV (vs. SCE), where the back-
ground current is not too high and the signal-to-noise

(S/N = 3) ratio is the highest.
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Fig. 2. Hydrodynamic voltammograms (HDVs) of PG (1), TBHQ (2),

BHA (3) and BHT (4) in MECC-ED. Fused-silica capillary: 25 lm
i.d. · 75 cm; working electrode: 300 lm diameter carbon disk elec-

trode; running buffer: 25 mmol/L SDS in 20 mmol/L (BB, pH 7.4);

separation voltage: 18 kV injection time: 18 kV/6 s; concentrations of

four analytes, 5.0 · 10�5 mol/L each.
3.2. Effects of the pH and the SDS concentration

In CE, the separation relies on the differential elec-

trophoretic mobility of the analytes, i.e., relies on the

degree of dissociation and the molecular size. In

MECC, however, both the difference in electrophoretic
mobility, and the partition of analytes between the

running buffer and the ‘‘pseudo-stationary phase’’ –

micelle play important role in sample separation.

Whether electrophoresis or partition mechanism dom-

inates the separation process mainly depends on the

acidity of the running buffer, hence, the pH value

strongly influences the separation.

The migration time of all analytes increases with the
increasing pH value. Moreover, higher pH value results

in longer analysis time, and the analytes are more sus-

ceptible to oxidation. At pH 7.4, the four analytes can

be well separated. Therefore, pH 7.4 was selected as

the optimum pH value for this work.

In addition to the pH value, the concentration of the

SDS is another important parameter. It is well known

that the SDS concentration is related to pseudo-reten-
tion factors of the solutes. As we can see from Fig. 3,

at fixed pH values, pseudo-retention time of all analytes

increases with increasing SDS concentration. When SDS

concentration exceeds 16 mmol/L, the elution order of

TBHQ and PG is switched, this is because the hydro-

phobicity of TBHQ is higher than that of PG. When

SDS concentration value is greater than 25 mmol/L,

baseline separation of the analytes can be obtained.
SDS concentration (25 mmol/L) was finally chosen for

shorter analysis time. Besides, the effect of the running

buffer concentration on migration time has also studied,

and the optimum running buffer concentration is

20 mmol/L (pH 7.4) in this work.
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Fig. 3. Effect of SDS concentration on the migration time of the

analytes. Working potential was +950 mV (vs. SCE); other experi-

mental conditions and labels are the same as in Fig. 2.



4

9

14

19

24

10 15 20 25

Separation voltage/kV

M
ig

ra
to

n 
ti

m
e/

m
in

1
2
3
4

Fig. 4. Effect of separation voltage on the migration time of the

analytes. Experimental conditions and labels are the same as in Fig. 3.

Fig. 5. Electropherograms of the standard mixture solution (a),

sample of mushroom cream (b), and sample of fish soup (c).

Experimental conditions and labels are the same as in Fig. 3. Peak

identification: (1) PG; (2) TBHQ; (3) BHA; (4) BHT.
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3.3. Effect of separation voltage and injection time

For a given capillary length, the separation voltage

determines the electric field strength, which affects

both the velocity of electrosmotic flow (EOF) and

the migration velocity of the analytes, which in turn
determines the migration time of the analytes. As

shown in Fig. 4, higher separation voltage gives short-

er migration time for all analytes. However, when the

separation voltage exceeds 20 kV, baseline noise be-

comes larger. Therefore, the optimum separation volt-

age selected is 18 kV, at which good separation can be

obtained for all analytes within 13 min.

The injection time determining the amount of sam-
pling affects both peak current and peak shape. The ef-

fect of injection time on peak current is studied by

varying injection time from 2 to 10 s at 18 kV. As ex-

pected, the peak current increases with increasing sam-

pling time. When the injection time is longer than 8 s,

peak current nearly levels off and peak broadening be-

comes more severe. In this experiment, 6 s (18 kV) is se-

lected as the optimum injection time.
Through the experiments above, the optimum separa-

tion conditions for PG, TBHQ, BHA, and BHT have

been decided. The typical electropherogram for a stan-

dard mixture solution of the four analytes is shown in

Fig. 5(a), from which we can see good separation can

be achieved within 13 min.

3.4. Reproducibility, linearity, detection limits and

recovery

The reproducibility of the peak current is estimated

by making repetitive injections of a standard mixture

solution (1.0 · 10�4 mol/L for each analyte) under the

selected optimum conditions. The relative standard

deviations (RSDs) of the peak current are 0.62%,
0.76%, 2.0%, 2.0% for PG, TBHQ, BHA, and BHT,

respectively (n = 7). The high reproducibility indicates

that this method is accurate and stable.

To determine the linearity of PG, TBHQ, BHA, and

BHT, a series of the standard mixture solutions contain-

ing 2.0 · 10�6 to 5.0 · 10�3 mol/L of each analyte were

tested. The determination limit is evaluated on the basis
of a signal-to-noise ratio of 3. The results of regression

analysis on calibration curves and detection limits are

presented in Table 1, from which we can see the detec-

tion limit of MECC-ED is much higher than that of

HPLC-UV method.

To further evaluate the precision and accuracy of the

method the recovery experiment under the optimum

conditions were also conducted with the real samples
(n = 3). Recovery is determined by standard addition

method and the results are listed in Table 2.

3.5. Application and discussion

Under the optimum conditions, MECC-ED is em-

ployed for the determination of PG, TBHQ, BHA,

and BHT, typical electropherograms for real samples
are shown in Figs. 5(b) and (c). By standard addition

method and comparing migration times of analytes with



Table 1

The results of regression analysis on calibration curves and the detection limitsa

Compound Regression equation Y = aX + bb Correlation coefficient Linear range (·10�4 mol/L) Detection limit (·10�6 mol/L)

PG Y = 9.36 · 104X � 0.1368 0.9995 0.02–5 0.29

TBHQ Y = 3.19 · 104X + 0.0404 0.9992 0.02–2 0.80

BHA Y = 2.73 · 104X � 0.0873 0.9999 0.05–5 1.0

BHT Y = 1.54 · 104X � 0.0720 0.9994 0.05–2 2.7

a MECC-ED conditions are the same as in Fig. 3.
b In the regression equation, the X value is the concentration of analytes (mol/L), the Y value is the peak current (nA).

Table 2

Assay results and recovery of antioxidants in fooda (mg/kg)

Sample PG TBHQ BHA BHT

Vegetable oil 1.03 · 102 (99.1%)b N.F.c (95.8%) N.F. (96.5%) N.F. (92.1%)

Mushroom cream 2.17 · 103(101.8%) N.F. (99.7%) N.F. (97.4%) N.F. (94.3%)

Fish soup N.F. (98.7%) 7.35 · 103 (95.4%) N.F. (102.3%) N.F. (95.9%)

a MECC-ED conditions are the same as in Fig. 3.
b The data in parentheses refer to the recovery rate.
c N.F. refers to not found.
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those of the standard mixture solution (Fig. 5(a)), anti-

oxidants content in food products can be determined.

The experimental results of real samples are presented

in Table 2.
4. Conclusions

The satisfactory analytical results show that this

method for the determination of PG, TBHQ, BHA,

and BHT by using micellar electrokinetic capillary

chromatography with electrochemical (MECC-ED) is
accurate, sensitive, convenient, and dependable, which

provides an alternative and convenient means for fast

monitoring of antioxidants in real-world food

products.
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